Modern Data Analytics Pipeline
Architecture Diagram
%% Autogenerated data-analytics-modern
graph TD
classDef standard fill:#1e293b,stroke:#38bdf8,stroke-width:1px,color:#e5e7eb;
classDef c-actor fill:#1e293b,stroke:#e5e7eb,stroke-width:1px,stroke-dasharray: 5 5,color:#e5e7eb;
classDef c-compute fill:#422006,stroke:#fb923c,stroke-width:1px,color:#fed7aa;
classDef c-database fill:#064e3b,stroke:#34d399,stroke-width:1px,color:#d1fae5;
classDef c-network fill:#2e1065,stroke:#a855f7,stroke-width:1px,color:#f3e8ff;
classDef c-storage fill:#450a0a,stroke:#f87171,stroke-width:1px,color:#fee2e2;
classDef c-security fill:#450a0a,stroke:#f87171,stroke-width:1px,color:#fee2e2;
classDef c-gateway fill:#2e1065,stroke:#a855f7,stroke-width:1px,color:#f3e8ff;
classDef c-container fill:#422006,stroke:#facc15,stroke-width:1px,color:#fef9c3;
subgraph ingestion ["INGESTION"]
direction TB
sources("<b>Data Sources</b><br/><i>external</i><br/><span style='font-size:0.8em'>APIs, DBs, Events</span>")
class sources standard
airflow("<b>Airflow (Orchestrator)</b><br/><i>orchestrator</i>")
class airflow c-compute
end
subgraph processing ["PROCESSING"]
direction TB
warehouse[("<b>Snowflake (Warehouse)</b><br/><i>database</i><br/><span style='font-size:0.8em'>Raw & Bronze Layers</span>")]
class warehouse c-database
dbt("<b>dbt (Transformation)</b><br/><i>service</i><br/><span style='font-size:0.8em'>SQL Modeling</span>")
class dbt c-compute
end
subgraph consumption ["CONSUMPTION"]
direction TB
bi("<b>Looker / Superset</b><br/><i>dashboard</i><br/><span style='font-size:0.8em'>Business Intelligence</span>")
class bi standard
end
%% Orphans
%% Edges
airflow -.-> sources
warehouse -.-> airflow
dbt -.-> warehouse
bi -.-> warehouse
Modern Data Analytics Pipeline
A robust ELT (Extract, Load, Transform) pipeline designed for scalability and modularity. Leverages the “Modern Data Stack” ecosystem.
Architecture Diagram
Description
This architecture separates the concerns of data ingestion, transformation, and storage, allowing data teams to iterate quickly.
Core Components:
- Orchestration (Airflow/Prefect): Manages the schedule and dependencies of data workflows.
- Transformation (dbt): “Data Build Tool” runs SQL transformations inside the warehouse, applying engineering practices (testing, version control) to data/analytics code.
- Cloud Data Warehouse (Snowflake/BigQuery): Serverless, infinite-scale storage that separates compute from storage.
- BI Layer (Looker/Superset): Visual exploration and dashboarding for business stakeholders.
Why this stack? The “ELT” pattern (loading raw data first, then transforming it) is more resilient than traditional ETL and preserves the raw source of truth.
Tech Stack
| Component | Technology |
|---|---|
| Segment | enterprise |
| Orchestration | airflow |
| Transformation | dbt |
| Warehouse | snowflake |
| Bi | looker |