enterprise

Modern Data Analytics Pipeline

Architecture Diagram


              %% Autogenerated data-analytics-modern
graph TD
  classDef standard fill:#1e293b,stroke:#38bdf8,stroke-width:1px,color:#e5e7eb;
  classDef c-actor fill:#1e293b,stroke:#e5e7eb,stroke-width:1px,stroke-dasharray: 5 5,color:#e5e7eb;
  classDef c-compute fill:#422006,stroke:#fb923c,stroke-width:1px,color:#fed7aa;
  classDef c-database fill:#064e3b,stroke:#34d399,stroke-width:1px,color:#d1fae5;
  classDef c-network fill:#2e1065,stroke:#a855f7,stroke-width:1px,color:#f3e8ff;
  classDef c-storage fill:#450a0a,stroke:#f87171,stroke-width:1px,color:#fee2e2;
  classDef c-security fill:#450a0a,stroke:#f87171,stroke-width:1px,color:#fee2e2;
  classDef c-gateway fill:#2e1065,stroke:#a855f7,stroke-width:1px,color:#f3e8ff;
  classDef c-container fill:#422006,stroke:#facc15,stroke-width:1px,color:#fef9c3;

  subgraph ingestion ["INGESTION"]
    direction TB
    sources("<b>Data Sources</b><br/><i>external</i><br/><span style='font-size:0.8em'>APIs, DBs, Events</span>")
    class sources standard
    airflow("<b>Airflow (Orchestrator)</b><br/><i>orchestrator</i>")
    class airflow c-compute
  end

  subgraph processing ["PROCESSING"]
    direction TB
    warehouse[("<b>Snowflake (Warehouse)</b><br/><i>database</i><br/><span style='font-size:0.8em'>Raw & Bronze Layers</span>")]
    class warehouse c-database
    dbt("<b>dbt (Transformation)</b><br/><i>service</i><br/><span style='font-size:0.8em'>SQL Modeling</span>")
    class dbt c-compute
  end

  subgraph consumption ["CONSUMPTION"]
    direction TB
    bi("<b>Looker / Superset</b><br/><i>dashboard</i><br/><span style='font-size:0.8em'>Business Intelligence</span>")
    class bi standard
  end

  %% Orphans

  %% Edges
  airflow -.-> sources
  warehouse -.-> airflow
  dbt -.-> warehouse
  bi -.-> warehouse
            

Modern Data Analytics Pipeline

A robust ELT (Extract, Load, Transform) pipeline designed for scalability and modularity. Leverages the “Modern Data Stack” ecosystem.

Architecture Diagram

Description

This architecture separates the concerns of data ingestion, transformation, and storage, allowing data teams to iterate quickly.

Core Components:

  • Orchestration (Airflow/Prefect): Manages the schedule and dependencies of data workflows.
  • Transformation (dbt): “Data Build Tool” runs SQL transformations inside the warehouse, applying engineering practices (testing, version control) to data/analytics code.
  • Cloud Data Warehouse (Snowflake/BigQuery): Serverless, infinite-scale storage that separates compute from storage.
  • BI Layer (Looker/Superset): Visual exploration and dashboarding for business stakeholders.

Why this stack? The “ELT” pattern (loading raw data first, then transforming it) is more resilient than traditional ETL and preserves the raw source of truth.

Tech Stack

ComponentTechnology
Segmententerprise
Orchestrationairflow
Transformationdbt
Warehousesnowflake
Bilooker