infra
intermediate

AI RAG with LLM

Solution Components

ai
ai
llm
llm
rag
rag
vector-db
vector-db
ml
ml
embeddings
embeddings

Architecture Visual

%% Autogenerated ai-rag-llm graph TD classDef standard fill:#1e293b,stroke:#38bdf8,stroke-width:1px,color:#e5e7eb; classDef c-actor fill:#1e293b,stroke:#e5e7eb,stroke-width:1px,stroke-dasharray: 5 5,color:#e5e7eb; classDef c-compute fill:#422006,stroke:#fb923c,stroke-width:1px,color:#fed7aa; classDef c-database fill:#064e3b,stroke:#34d399,stroke-width:1px,color:#d1fae5; classDef c-network fill:#2e1065,stroke:#a855f7,stroke-width:1px,color:#f3e8ff; classDef c-storage fill:#450a0a,stroke:#f87171,stroke-width:1px,color:#fee2e2; classDef c-security fill:#450a0a,stroke:#f87171,stroke-width:1px,color:#fee2e2; classDef c-gateway fill:#2e1065,stroke:#a855f7,stroke-width:1px,color:#f3e8ff; classDef c-container fill:#422006,stroke:#facc15,stroke-width:1px,color:#fef9c3; subgraph inference ["Inference Pipeline"] direction TB query_api(("<img src="/icons/inframap/edge.png" width="32" height="32" /><br/><b>Query API</b><br/><i>gateway</i><br/><span style='font-size:0.8em'>REST/GraphQL endpoint</span>")) class query_api c-network retriever("<img src="/icons/inframap/compute.png" width="32" height="32" /><br/><b>Retrieval Service</b><br/><i>service</i><br/><span style='font-size:0.8em'>Semantic search</span>") class retriever c-compute llm_service("<img src="/icons/inframap/compute.png" width="32" height="32" /><br/><b>LLM Service</b><br/><i>service</i><br/><span style='font-size:0.8em'>OpenAI / Anthropic API</span>") class llm_service c-compute end subgraph data_pipeline ["Data Pipeline"] direction TB ingestion_pipeline("<img src="/icons/inframap/compute.png" width="32" height="32" /><br/><b>Document Ingestion</b><br/><i>service</i><br/><span style='font-size:0.8em'>Parse, chunk, embed</span>") class ingestion_pipeline c-compute embedding_service("<img src="/icons/inframap/compute.png" width="32" height="32" /><br/><b>Embedding Service</b><br/><i>service</i><br/><span style='font-size:0.8em'>Text → Vectors</span>") class embedding_service c-compute doc_storage[("<img src="/icons/inframap/database.png" width="32" height="32" /><br/><b>Document Storage</b><br/><i>database</i><br/><span style='font-size:0.8em'>S3 / Blob Storage</span>")] class doc_storage c-database vector_db[("<img src="/icons/inframap/database.png" width="32" height="32" /><br/><b>Vector Database</b><br/><i>database</i><br/><span style='font-size:0.8em'>Pinecone / Weaviate</span>")] class vector_db c-database end %% Orphans users(("<img src="/icons/inframap/user.png" width="32" height="32" /><br/><b>Users</b><br/><i>actor</i><br/><span style='font-size:0.8em'>End users querying AI</span>")) class users c-actor %% Edges users -.-> query_api query_api -.-> retriever query_api -.-> llm_service retriever -.-> vector_db ingestion_pipeline -.-> embedding_service ingestion_pipeline -.-> vector_db

AI RAG with LLM

RAG (Retrieval Augmented Generation) architecture combining vector databases with Large Language Models to provide accurate, context-aware AI responses grounded in your own data.

Documents are embedded and stored in a vector database, then retrieved based on semantic similarity to augment LLM prompts with relevant context, reducing hallucinations and improving accuracy.

Tech Stack

Component Technology
Llm OpenAI / Anthropic
Vector Db Pinecone / Weaviate
Embeddings OpenAI Ada-002
Orchestration LangChain

Cloud Cost Estimator

Dynamic Pricing Calculator

$0 / month
MVP (1x) Startup (5x) Growth (20x) Scale (100x)
MVP Level
Compute Resources
$ 15
Database Storage
$ 25
Load Balancer
$ 10
CDN / Bandwidth
$ 5
* Estimates vary by provider & region
0%
Your Progress 0 of 0 steps